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Abstract A source-and-sink method has been used to solve a Stefan problem imposed with a moving heat 
front travelling at constant velocity in a fixed direction. The problem is transformed to moving coordinates 
and Laplace transform is used to develop the exact solution of this problem in quasi-steady state. Twelve 
cases have been studied that cover constant temperature and flux conditions imposed on the moving front. 
The interface positions and the temperatures in the medium can be derived in closed forms for eight cases. 
For the four cases whose solutions cannot be derived in a closed form, procedures for exact solution of the 
problems are given in great detail. Numerical examples are also provided for a parametric study of the 

problems. 

INTRODUCTION 

Stefan problems that can be solved exactly must be 
adaptable to a similarity transformation. This restricts 
the problems to be solved in an unbounded medium 
which is made of a material of constant thermo- 
physical properties and is imposed with a constant tem- 
perature boundary condition [1, 2]. With the severe 
limitation imposed by the exact solution, there 
have been numerous efforts documented in the litera- 
ture devoted to the development of approximate solu- 
tions that encompass use of power series expansions 
[3, 4], polynomial expansions in terms of com- 
plimentary error functions [5], solutions by means of 
integrodifferential equations [6, 7], coordinate trans- 
formations [8, 9], asymptotic expansions based on 
perturbation techniques [10, 11], complex variables 
[12, 13], source-and-sink methods [14, 15], heat bal- 
ance integrals [16, 17], and even inverse solution tech- 
niques [18, 19]. Following a different approach, the 
problems have been solved by using a weak for- 
mulation in terms of enthalpy [20, 21] and in terms of 
specific heat [22], and the variational formulation [23, 
24]. Numerical techniques have also been developed, 
which include use of a boundary element method [25, 
26] and an incremental linearization scheme based on 
the source-and-sink method [27-29]. 

It is the intention of this paper to present an exact 
solution that does not require use of the similarity 
transformation. It is concerned with the phase change 
in an infinite medium heated by a plane heat front 
moving at a constant velocity in a fixed direction. The 
medium has equal phase properties and may or may 
not dissipate heat to the surroundings. Specifically, 
the exact solutions will be developed when the heat 
transfer in the medium has reached a quasi-steady 
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state, a point in time when the initial transient period 
is over. 

The problem analyzed in this paper is somewhat 
similar to the classical one-dimensional moving-heat- 
front problems studied by Rosenthal [30]. However, 
no phase change has been considered in his work. The 
moving heat front problem is important because of 
recent interest in welding and annealing in which the 
heat transfer in the medium is usually solved by a 
numerical method (e.g. Grigoropoulos and Dutcher 
[31]). The analysis given in this paper thus serves three 
purposes. It demonstrates that the exact solutions can 
be obtained for a Stefan problem imposed with a 
moving heat front in a quasi-steady state. It also 
complements Rosenthal's work on moving heat front 
studies by inclusion of a phase change. Finally, it 
provides limiting cases by which the numerical 
methods developed for the solution of the welding and 
annealing problems can be checked for accuracy. 

ANALYSIS 

The problem at hand can be formulated by means 
of a source-and-sink method in the fixed coordinate 
x. The equations will be given with the variables ex- 
pressed in primitive forms first for the sake of clarity 
[27, 28]. 

Governing equation : 

O2T m 2 T _  OL 1 ~T 
Ox 2 ~7~(x -  R,) = ~ ~ '  

T(x,t)  t > O  i = a , b .  (1) 

Initial condition : 
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NOMENCLATURE 

a, b equation (9a) r/ 
c equation (9b), specific heat 0 
d equation (9b) 
k thermal conductivity p 
L latent heat for melting or freezing 
M equation (13a) oo 
m heat dissipation coefficient 
N equation (13b) 
q heat flux 
R interface position 
St Stefan number 
s equation (9c) 
T temperature 
t time 
V velocity of moving heat front p 
x position in fixed coordinate, q 

Greek symbols 
c~ thermal diffusivity 
6 Dirac-delta function 

dimensionless position 

moving coordinate pointed opposite to 
dimensionless temperature 
moving coordinate 
dimensionless interface position, 
density 
dimensionless heat flux. 

Subscripts 
a, b interface positions in fixed coordinate 
i dummy representing either a or b 
m melting temperature 
o temperature at the moving heat front 
oa, ob interface positions in moving 

coordinate 
constant pressure condition 
the moving heat front under specified 
flux condition 

T the moving heat front under specified 
temperature condition 

th threshold 
ub upper bound. 

r(x ,  o) = o < Tin. 

Boundary conditions : 

T(Vt, t) = To 

(2) 

o r  

[ ~ r ( v t  +, t) ~ T( v t - ,  t) ] 
- [_ ~x ~xx J=q++q-=q 

(3a, b) 

T ( -  oo, t) = finite (3c) 

T(oo, t) = O. (3d) 

Interface conditions : 

T(Ri, t) = Tin, i = a , b .  (4a, b) 

Here the Dirac-delta term in equation (1) vanishes if 
the heat flux, q, released by the moving heat front is 
small, so that it is insufficient to cause phase change. 
If the heat flux is large, phase change takes place. 
Then, the temperature in the medium is divided into 
two branches : - oo < x < Vt and Vt < x < oo. In the 
branch behind the front ( -  oo < x < Vt), the Dirac- 
delta term models a source front that locates the inter- 
face position in this branch, whereas in the branch 
ahead of the front (Vt < x < ~ ) ,  the Dirac-delta term 
models a sink front that locates the interface position 
in that branch. The interface ahead of the moving heat 
front is designated R,, while that behind the front is 
des igna ted  R b. In the fixed coordinate, these interfaces 
are moving together with the imposed heat front in 
the positive x-direction. 

Equations (3a) and (3b) provide a constant tem- 
perature or a constant heat flux condition that may 

be imposed at the moving front, where x is equal to 
Vt product. Notice that the interface Stefan conditions 
have been incorporated into equation (1), which can 
be readily verified by integrating equation (1) across 
the interface in question [29]. Equations (4a) and (4b) 
give the temperature condition at the interfaces. 

For the solution of the problem in quasi-steady 
state in the range of Vt < x < o% one introduces a 
transformation that relates ¢ and x as ~ = x -  Vt, as 
suggested by Rosenthal [30]. On the other hand, for 
the solution of the problem in the quasi-steady state in 
the range of - oc < x < Vt, one introduces a different 
transformation that relates q and x as t /=  V t - x  (see 
Fig. 1). Then, the quasi-steady problems in two 
branches are all expressed in the same range of 0-oo. 
The problems can be formulated as follows. 

Governing equations : 

d 2 T/d~ 2 

d2 T/dq 2 + \~]dr /d .  -m2r= 

6(~-Ro~) 

6 ( - n +  Ro~) 

Boundary conditions : 

T(O) = To 

dT(O) q + dT(O) 

d~ k d~l 

T(~) 0 < ~ < o o  
(5a, b) 

T(r/) 0 < r / <  oo' 

(if To is given) 

q 

k 

(6a) 

q = q+ +q  (ifqisgiven) (6b~)  

T(¢ = oo) = 0 (6e) 
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Fig. 1. Change from fixed to moving coordinates. 

T(q = oo) = finite. (6f) 

Interface conditions : 

T(RoO =Tm i = a , b .  (7a, b) 

In the formulation above, the phase change problems 
have been expressed in moving coordinates in the 
search for quasi-steady solutions. Notice that, in 
moving coordinates, Ro, and Rob are used to repre- 
sent the interface positions. 

Equations (5a, b) share the same range of ~ and rt ; 
they can be solved by a Laplace transform [32]. In 
this effort, the Dirac-delta functions are expanded in 
terms of Heaviside functions and the Laplace trans- 
form is applied to these functions. The shifting 
theorem in the transform is then used to recover the 
temperatures for the delta term in the 4 and q axes. 
Finally, for that solution of Tin 0 < q < oo, a reversal 
of the t t axis, which calls for changing r/to - 4, Rob to 
--Rob and dT(O)/dq to -dT(0)/d~, transforms the 
temperature in this branch in terms of 4. The quasi- 
steady solution results can be summarized as follows : 

[ FT,(0_) V 3e  ~¢-e a¢ T(4) + ~ T(O)J 

ce-C¢ _ de-de 
+ T(O) c-- d 

pVL e -c<~ RoO--e d(~--R°I~) 
+ 

k c - d  

for ~ < Rob (8a) 

T(4) = [ T ' ( 0 - ) +  
V -] e-,.~ _ e-d~ 

T(O)J 2~cc 

ce-~¢ _de-de 
+ T(O) c -  d 

for  Rob < ~ < 0 (8b) 

[ V ] e°*-eb¢ ae"¢-be b~ 
.T(~)= T ' (0+)+ T(0) -a_-~f f -+T(0)  a - b  

f o r 0 <  ¢ < Ro, 

T(~) = IT ' (0  +) V -1 e " ¢ - ¢  ¢ + ~ T(0)] ~ + 7"(0) - -  

+ 
p VL e ~(~- Ro.) - -  e h{4- Ro.) 

k a - b  

(8c) 

aea¢ _ beh~ 

a - b  

for ~ > Ro~ (8d) 

where 

a V 
b =  + ~ ( s ~ -  l) ~ 0  

1 2mo: 2 t,,2 

c V 
= + ~ - ( s +  l) ~ 0 

d Z~ 

(9a-c) 

Equations (8a)-(8d) are general and can be applied 
to both types of conditions imposed at the moving 
heat front. In this effort, they must satisfy conditions 
(6e) and (6f). It follows that 

T , ( O + ) + ( V + a ) T ( O ) + ~ e  ,m 0 (lOa) 

and 

T , ( O _ ) + I L ~ _ c ) T ( o ) _ p V L  \ ~ c  ,'R~, =0 .  (10b) 

These equations can be used to simplify (8a)-(8d). 

Class A problem--imposed temperature at the heat 
front 

For a constant temperature imposed at the mov- 
ing heat front [equation (3a)], it is convenient to 
express the medium temperature in four branches as 

O(~<Pob)=[Oo_~_~s(Na_N,.)l  e a(~..v~¢ (l la) 

O(pob<~<O)=[Oo+~--~ssN'(l--e-<)le-a'~'v~ 

(l lb) 

O(O<~<po,)=[Oo+~--~sM"(1--e<)leh(':v~ 

(llc) 

O(( > Poa)= [Oo-- 1 b 1 ~ s s ( M - M  ~) e h~'v~;. (l id) 

Here, for the sake of generality, the equations are cast 
in dimensionless forms defined as 

T 0 4 c p T m  To 
= ( ~ / v ) -  ~ L - S t  Tin=O° 

q Ro~ 
= eo - Poi i = a,b. (12a-g) p VL (~/V) 
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Notice that, in equations ( l la)-(1 ld), the interface 
positions Poa and Pob have been expressed in terms of 
M and N as 

V 
Poa = - -- In M (13a) 

C( 

V 
Pob = In N. (13b) 

These M and N become the new unknowns to be 
determined. 

To find the interface positions for this class of prob- 
lems, one sets ~ and T in equation (1 lc) to Ro, and 
T~, respectively. This gives 

1 
O o M - b - - ~ s ( 1 - M s V / = ) - I  =0 .  (14t 

Likewise, setting ~ and Tin equation (1 lb) to Rob and 
Tin, respectively, gives 

1 NSV/~) OoU-d- -~s(1- -  - 1  =0 .  (15) 

These equations can be solved individually for M and 
N. 

To find the heat flux at the moving heat front, one 
introduces equations (10a) and (10b) into equations 
(6b)-(6d), in which r/ in equation (6c) is changed to 
- ¢ .  It follows that 

to = StsOo + M~ + N '. (16) 

The ratio of heat that transfers forward to that trans- 
fers backward can be derived as 

St(1 +s)Oo +e  -~'- °P°~/2 
(RATIO)T = - S t ( 1 - s ) O o - e  -(~+~)po¢2" (17) 

This completes the solution of the problem for a tem- 
perature condition imposed on the heat front. 

Class B problem--imposed f lux at the heat front 
For a constant heat flux imposed at the moving 

heat front [equation (3b)], q+ ,  q - ,  and T(0) are all 
unknown. It is convenient to derive the temperature 
equations in the following forms : 

1 
0(~ < Pob) = ~s(Og--MO-Na)e -d('/v)¢ (18a) 

1 , ~ a d c ~  

0(Pob < ~ < 0) = ~S(Og--N e - ~ - M  )e (/v)¢ 

1 
0(0 < ~ < Poa) = ~sffO-MaeS¢ + N")eb(=/~c 

1 b c 
0(~ > Poa) = ~ S  (~0--M + N  )e b~/v~¢. 

(18b) 

(18c) 

(18d) 

To derive equations to solve for M and N, equations 
(14)-(16) are combined to give 

and 

¢o - -  M a ~,,'d 
( S t s + I ) M ~ + \ ~ + l j  - - c o = 0  (19) 

N \ Sts+ 1 (20) 

In this case, equation (19) will be used first to solve 
for M, which is, in turn, used in equation (20) to solve 
for N. Once they are found, they can again be used in 
equation (16) to find T(0). The ratio of heat that 
transfers forward to backward can also be derived as 

(1 +s)(o)-e(~+'~P,,~/2)-e i,, tl,,o,,~2 
(RA TIO)q = 

(1 - s ) ( o 9 - e  -c~- ')Poo"2) - e c'+' ipo~,'2" 

(21) 

The problem is then solved completely. 

SPECIALIZATION 

The analysis developed above is general, which can 
be used to solve 12 different cases summarized in 
Tables 1 and 2. Six cases are solved for the Class A 
problem (imposed temperature at the heat front) as 
listed in Table 1. In this table, the simplest cases (a 
and b) are the ones for a heat front that releases only 
a small amount of heat so that no phase change takes 
place. Here, case a is for the medium without heat loss 
to the surroundings (m = 0), while case b is for the 
medium with heat loss to the surroundings (m > 0). 
Results tabulated for these cases can be easily derived 
by using the equations given in this paper in which 
terms containing pVL/k in equations (8a)-(8d) are 
discarded for heat transfer without phase change. This 
is equivalent to setting M and N to zero in the dimen- 
sionless equations. Notice that the temperature 
derived for case a for ~ > 0 corresponds to that prob- 
lem of melting with continuous removal of the melt 
as analyzed by Landau [33]. 

Cases c and d refer to a situation when the heat 
released by the front is large enough to cause phase 
change. Both are for the medium without heat loss to 
the surroundings; m is thus taken to be zero. Case c 
is for the medium initially at the phase change tem- 
perature (Tin = 0), while case d is for the medium with 
the phase change temperature that is higher than the 
initial temperature (Tm > 0). The former thus rep- 
resents a one-phase problem, while the latter rep- 
resents a two-phase problem. Expectedly, Pob is 
located at -- ~ for both cases and, consequently, N is 
zero. The other interface position, Poa, can be found 
by using equation (14). Closed-form expressions can 
be derived for this position as well as the temperatures 
for cases c and d, as listed in the table. It is noted that, 
for a constant temperature imposed on the heat front, 
the results are quite similar for the one- and two-phase 
problems. For example, the temperatures behind the 
front are identical. Even the temperature equations in 
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the range of 0 < ~ < po, are identical for the two cases. 
However, this should not be taken as their having the 
same profiles, because their interface positions are 
different. 

Similar cases are analyzed in Table 2 for the Class B 
problem (imposed flux at the heat front). It is expected 
that, for this class, the results for cases a and b can be 
recast so that they conform to the expressions derived 
by Rosenthal [30] for heat diffusion without phase 
change. As for case c, N is again zero. This permits 
the front interface position, Poa, to be found directly 
from equation (20). It is noted that, for this case, 
because Po, is equal to In co, the temperature behind 
the heat front is independent of the interface position. 
Similar results can be obtained for case d as listed in 
the table. 

RESULTS AND DISCUSSION FOR CASES e AND f 

Physically, in each table, cases c and d provide 
upper bound for po, for cases e and f, respectively. 
Furthermore, case e can be considered a special case 
of case f. Then, if the heat front is imposed with a 
temperature condition, the upper bound for Po, can 
be established in a general form as 

/l+S,0o  
p . . . .  b.~ = In k l+St / (22)  

Correspondingly, the upper bound for Pob can be 
established as 

( l + S , 0 o  ~ 
- l n \  I + S I  /" (23) P o b ,  ub ,  Y = 

A close examination of equations (14) and (15) 
reveals some characteristics which are important to 
the numerical solution of the interface positions with 
these equations. It can be shown that the left hand 
side of equation (14) has a value that decreases mono- 
tonically with the increase of Po~. On the other hand, 
the left hand side of equation (15) increases mono- 
tonically with the increase of Pob. Since both of these 
sides have a value (0o- 1) > 0 at Po, and Pob equal 
to zero, the interface positions can always be found 
uniquely when a temperature condition is imposed on 
the front. 

As for the case of a flux condition imposed on 
the front, the temperature at the front becomes an 
unknown. It is necessary to check if the imposed heat 
flux is of a value higher than the threshold for phase 
change. This threshold flux can be derived by setting 
M and 0o in equations (16) and (20) to unity and 
combining these equations. The threshold flux can 
then be solved as 

~th = Sts + 2. (24) 

The upper bound for Po~ can be established as 

P .... b,q = In . (25) 

| , 6  i i i i i 

T e s t  M 1  

1.4 A f 2  . . . . .  r, 
Ai~ P~ 
A f 4  - -  - -  - ^f5 ,9 

1.2 . A f 6  / ,  I 
l ,  
l, 
I' 

I.O / , . , ,  

/ ,  / 
.5 / , ;  

o.e ~- / , , ;  
/ "/ / i/ 

/ ,/ ff 
o., , ,2~;" 

/ ,  , '  ] 

o.s / . . - :  ; . "  

O.._30n - 2 6  -20 -15 - I 0  -6 O 6 

Zeta 

Fig. 2. A parametric study of Stefan problems of case f in 
Class A. 

Notice that, when a heat flux condition is imposed on 
the front, the left hand side of equation (19) has a 
value ((o~h-co) < 0 at Poa equal to zero. This side 
increases monotonically with po~. Hence, a unique 
solution of po, is assured as long as co > co,,. Also for 
this case, the interface position behind the front, po~, 
can be found directly by using equation (20) ; no iter- 
ation is thus necessary. The nonlinear equations given 
in this paper can be solved accurately by means of a 
bisection method or the Newton-Raphson method. 

Equations given in this paper have been used to run 
tests for case f in Tables 1 and 2. The results are 
plotted in Figs. 2 and 3. In Fig. 2, the moving heat 
front is imposed with a constant temperature. All the 
parameters tested in this figure have been summarized 
in Table 3, where the results are also tabulated for the 
temperature and the heat flux at the moving front, the 
interface positions, and the ratio of heat transfer. As 
expected, the designation Afl (first column) refers to 
test 1 in Class A and case f. Six tests have thus been 
made in this figure. It is noted that, for all the numeri- 
cal results presented in this paper, the interface pos- 
itions were solved by using a bisection method which 
was converged to 1 0  - 6  . 

In all the tests performed in Fig. 2, the temperature 
profiles ahead of the front behave quite similarly all 
are very steep, which makes it difficult to visually 
detect the temperature-slope discontinuity at interface 
in this region. However, the temperature profiles 
behind the front deviate noticeably to the extent that 
their behaviors can be easily visualized. Take Af l -  
Af3 behind the front for example. The curves spread 
out evenly, a result of the change of the Stefan 
number, a ratio of the sensible heat to the latent heat. 
A heat front moving in a medium of large Stefan 
number (or small latent heat) thus has an effect of 
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Fig. 3. A parametric study of Stefan problems of case f in 
Class B. 

leaving behind a large melted pool, a fact which is 
physically justified. On the other hand, a doubling of  
the parameter s tends to reduce the size of  this melted 
pool (see tests Af4-Af6).  This can certainly be attri- 
buted to the large m ~ / V  ratio as defined for this par- 
ameter in equation (9c). It is also noted that, when 
the s value is increased, the medium temperature 
behind the front becomes less dependent on the Stefan 
number as the curves fall one on top of  the other. For  
all the cases tested, the magnitude of  pob is always 
greater than Pea, a result of  the mot ion of  the front. 
Of  particular interest in this figure is the difference in 
the temperature curvature across the interface behind 
the moving front. In the liquid region, the curves have 
a slight curvature bent downward,  whereas in the solid 
region, the curves bent upward. This trend persists in 
the study of  Class B problems in the paragraphs that 
follow. 

Six tests have been performed for Class B, case f. 
As shown in Fig. 3, when the flux condit ion is imposed 

at the moving front, the temperature at the front 
moves up and down along the zero axis in response 
to the imposed flux. The temperature curves thus 
spread out, which facilitates viewing their trends in 
the figure. Attent ion is first directed to those curves 
located ahead of  the front. Here, the curves exhibit a 
different behavior under the imposed flux condition. 
For  example, an increase of  the Stefan number under 
the same flux condit ion (see tests Bf l -Bf3  listed in 
Table 3) is able to relocate the interface positions so 
that the curve with the largest Stefan number has the 
smallest value of  Pea. This can be alluded to the rapid 
drop of  the dimensionless front temperature for this 
curve, as shown in Fig. 3. Nevertheless, it reverses 
the trend found earlier for the front imposed with a 
constant temperature condit ion (refer to Pea data for 
tests A f l - A f 3  in Table 3). It should be noted that 
the trends observed here are also related to how the 
dimensionless groups are defined, a fact well known 
in the explanation of  heat transfer phenomena. 

The same trend is found for those curves located 
behind the front. Here, in further reinforcement of  
what was discovered earlier for the front imposed with 
a constant temperature condition, the temperature 
behind the front exhibits the same curvature vari- 
ations across the interface. As a result, for the case of  
large heat flux (Bfl),  there is a distinct inflection point 
for the temperature curve in the liquid region. This is 
believed to be the combinat ion of  the effects of  the 
heat dissipation in conjunction with medium refreez- 
ing. This trend is not found in conventional  Stefan 
problems. 

It is also interesting to compare the heat transfer 
ratio for the two classes of  problems. As shown in 
Table 3, when a flux condit ion is imposed on the front, 
this ratio is found to be insensitive to the change of  
the Stefan number. Yet, it is highly sensitive to the 
change of  s, Such trends, however, are not  found in 
the case of  the imposed temperature. For  example, in 
tests A f l - A f 3  where the s value is low, the heat trans- 
fer ratio increases with the Stefan number. Yet, it is 
able to hold steady at about  2.4 for the case of  large s 
value, as shown for tests Af4-Af6  in the table. Notice 
that, for a flux condit ion imposed on the front, the 

Table 3. Compilation of data for a parametric study of case f in Classes A and B 

Test St  s 0 o o3 Pea Pob Ratio 

Afl 1.625 1.2 1.5 4.234 0.2538 - 0.9966 7.713 
Af2 3.25 1.2 1.5 6.935 0.3006 - 1.967 10.73 
Af3 6.5 1.2 1.5 12.71 0.3312 -2.884 11.25 
Af4 1.625 2.4 1.5 7.255 0.1865 - 0.3764 2.326 
Af5 3.25 2.4 1.5 13.02 0.2094 -- 0.4616 2.395 
Af6 6.5 2.4 1.5 24.67 0.2231 - 0.5157 2.418 

Bfl 1.625 1.2 9.825 20 1.740 - 18.71 11.26 
Bf2 3.25 1.2 4.903 20 1.279 - 13.62 11.28 
Bf3 6.5 1.2 2.445 20 0.7463 - 7.735 11.29 
Bf4 1.625 2.4 4.975 20 0.8263 - 1.969 2.47 
Bf5 3.25 2.4 2.453 20 0.4785 - 1.121 2.46 
Bf6 6.5 2.4 1.176 20 0.0882 - 0.1974 2.36 



78 C.K. HSIEH 

threshold heat flux must be evaluated prior to the 
formal solution o f  the problem. Of  those tested in 
Table 3, Bf6 has the largest threshold flux (17.6). This 
leads to the smallest 0o value (1.176) in the group. The 
temperature at the moving front is found to rise slowly 
beyond the melting point, a fact which makes the 
evaluation of  the threshold flux an important  pro- 
cedure in the solution of  the Stefan problems. 

CONCLUDING REMARKS 

The equations derived in this paper have been tested 
rigorously for accuracy. This is necessary since exact 
solutions have not been available for the classes of  the 
problems studied here, while numerical solutions of  
the Stefan problems themselves are, after all, inexact, 
which make them inadequate for comparison. In this 
effort, use was made of  case f for tests because of  its 
generality, and the test for exactness was made by 
substituting equations (11) and (18) into equations 
(1), (3), and (4). Additionally, temperatures have also 
been tested for continuity at the heat front and the 
interface positions. These temperature equations have 
also been tested for their satisfaction of  the Stefan 
conditions generated by using equation (1). In all 
tests, the original governing equation and boundary 
conditions are satisfied exactly. 

The source-and-sink method has shown to be 
attractive in the solution of  the Stefan problems given 
in this paper. Using one set of  equations to solve 
temperatures in four regions, the source-and-sink 
method is ideally suited to the solution of  the present 
problems by Laplace transform. In this method, the 
general solutions are expressed in terms of  the tem- 
perature and its slopes at both sides of  the moving 
front. The boundary conditions can thus be applied 
readily to complete the solution. The source-and-sink 
method given in this paper provides an effective 
approach for an exact solution of  the Stefan prob- 
lems. 
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